## Activity $2.5^{\ddagger}$ - Linear Approximation

FOR DISCUSSION: What is Leibniz notation and why is it useful?
Describe the geometrical basis behind linear approximation.
Explain how linear approximation is used in analyzing error propagation.

1. (a) Using Leibniz notation, find the first and second derivatives of $y=-2 x^{3}+x^{2}-1$.
(b) Using Leibniz notation, evaluate the derivatives in Part (a) at $x=-1$.
2. Recall that $\Delta y=y(x+\Delta x)-y(x)$ and $d y=y^{\prime}(x) d x$. Let $y=2 x^{3}$.
(a) Find $\Delta y$ when $x=2$ and $\Delta x=0.03$.
(b) Find $d y$ when $x=2$ and $\Delta x=0.03$. (Note that $d y$ is an approximation of $\Delta y$.)

[^0]3. Let $f(x)=2 x^{3}-3 x^{2}$.
(a) Compute $f(2)$ and $f^{\prime}(2)$.
(b) Write down a point-slope form of the equation for the tangent line to the graph of $f$ at $x=2$. Then write the tangent line in slope-intercept form.
(c) Use the tangent line at $x=2$ from Part (b) to approximate $f(2.01)$.
$$
f(2.01) \approx
$$
(d) Use your calculator to find the exact value of $f(2.01)$ and compare it to your approximation in Part (c). Is your approximation a good one?
$$
f(2.01)=
$$
4. A cubic wooden box with no top has four sides and a bottom, each having a surface area of $x^{2}$ square inches. Therefore, the surface area of the box is $A=5 x^{2}$ square inches. An edge is measured as $x=36$ inches, with possible error in measurement of $\Delta x= \pm 0.125$ inches. The measurement is then used to calculate the surface area of the box.
(a) Use $d A$ to approximate the propagated error $\Delta A$ in the surface area calculation.
(b) Use $d A / A$ to approximate the relative error $\triangle A / A$ in the surface area calculation.
5. The radius of a sphere was measured to be 19 cm with a maximum possible error of $\pm 0.5 \mathrm{~cm}$. Use a linear approximation to estimate the propagated and relative errors in the calculated volume. (HINT: The volume of a sphere of radius $r$ is $V=(4 / 3) \pi r^{3}$.)
6. The radius of a circular disk is measured as 24 cm with a maximum error in measurement of $\pm 0.1 \mathrm{~cm}$. Estimate the propagated and relative errors in the calculated area of the disk.
7. An oil tank in the form of a right circular cylinder of radius $r$ has a height $h$ of 37 meters and a volume of $V=37 \pi r^{2}$. The radius is measured as 12 meters with a maximum possible error of $\pm 0.15$ meters. Estimate the propagated and relative errors in the calculated volume.


[^0]:    * This activity has supplemental exercises.

