Lesson 2.4 - Analyzing Cubic Functions

A cubic function is a function of the form $y=f(x)=a x^{3}+b x^{2}+c x+d$, where a, $b, c, d \in \mathbf{R}, a \neq 0$

Domain: The set of all real numbers.
Graph: Everywhere continuous (no breaks, jumps, holes) and no corners or vertical tangents (differentiable).
Orientation: The graph "starts low and ends high" if $a>0$, and the graph "starts high and ends low" if $a<0$.

y-intercept (initial value): Set $x=0$ and solve for y. In this case, $y(0)=f(0)=d$. x-intercepts (roots, zeros): Set $y=f(x)=0$ and solve for x. This may require factoring, grouping, guess-and-check, long division, or technology.

Derivative: By Activity 2.3, if $f(x)=a x^{3}+b x^{2}+c x+d$, then $f^{\prime}(x)=3 a x^{2}+2 b x+c$.

Extrema, saddle points, and intervals of increase/decrease: The graph of a cubic function has no highest point and no lowest point, but it may have a "local" maximum and a "local" minimum. These points are collectively called local extrema. If not, then the graph may have a saddle point, which is a point where the graph levels off instantaneously and then continues on in the same direction. Since the graph has a horizontal tangent line at each extremum and saddle point, set $y^{\prime}=f^{\prime}(x)=0$ and solve for x. These values are called critical points. Test the derivative for sign on either side of and between each critical point. A positive derivative means that the graph is increasing, and a negative derivative means that the graph is decreasing. A sign change means that the graph has an extremum, and no sign change means that the graph has a saddle point.

Special forms: Difference of cubes: $x^{3}-a^{3} \quad$ Factors as $(x-a)\left(x^{2}+a x+a^{2}\right)$.
The only x-intercept is $x=a$.
Sum of cubes: $\quad x^{3}+a^{3} \quad$ Factors as $(x+a)\left(x^{2}-a x+a^{2}\right)$.
The only x-intercept is $x=-a$.

