Homework 2.4 - Analyzing Cubic Functions

1. (1 pt) alfredLibrary/AUCV/chapter2/lesson4/quiz/cubes1pet.pg
(a) Factor the difference of cubes:
$x^{3}-125=$ \qquad
(b) Factor the sum of cubes:
$x^{3}+64=$ \qquad
2. (1 pt) alfredLibrary/AUCL/chapter2/lesson4/quiz/question8pet.pg Find all of the zeros (roots, x-intercepts) of the function $f(x)=x^{3}+5 x^{2}-6 x$. If there is more than one answer, then enter them as a comma separated list. ENTER EXACT ANSWERS, not decimal approximations. If there are no zeros, then enter the word NONE.
$x=$ \qquad
3. (1 pt) alfredLibrary/AUCL/chapter2/lesson4/quiz/question6pet.pg Given the graph of $y=f(x)$ below, fill in the blanks with the marked x-values at which the given condition is true. For each part, enter your answer as a comma-separated list, e.g., $\mathbf{x 1 , x 3 , x 5}$. Enter the word NONE if no points satisfy the given condition.

(a) $f(x)>0$ at $x=$ \qquad
(b) $f^{\prime}(x)>0$ at $x=$ \qquad
(c) $f(x)$ is increasing at $x=$ \qquad
(d) $f^{\prime}(x)$ is increasing at $\boldsymbol{x}=$ \qquad
(e) The slope of $f(x)$ is negative at $x=$ \qquad
(f) The slope of $f^{\prime}(x)$ is negative at $x=$ \qquad
4. (1 pt) alfredLibrary/AUCI/chapter2/lesson4/concavitylbpet.pg Let $f(x)=x^{3}-4 x^{2}+6 x+1$.

Perform a number-line sign test for the second derivative to find the x-coordinates of inflection points and the open intervals on which f is concave up or down.
(a) f is concave up on the interval(s) \qquad
(b) f is concave down on the interval(s) \qquad
(c) The inflection points occur at $x=$ \qquad
Notes: In the first two blanks, your answer should either be a single interval, such as $(0,1)$, a comma separated list of intervals, such as $(-i n f, 2),(3,4)$, or the word NONE. In the last blank, your answer should be a comma separated list or the word NONE.
5. (1 pt) alfredLibrary/AUCI/chapter2/lesson4/graphanalysis1pet.pg Suppose that $f(x)=x^{3}-9 x^{2}+2$.
(a) List all the critical points of f. If there are no critical points, then enter the word NONE:
$x=$ \qquad
(Now perform a number-line sign test for the derivative function.)
(b) Use interval notation to indicate where f is increasing:
(c) Use interval notation to indicate where f is decreasing:
(d) List the x-values of all local maxima of f. If there are no local maxima, then enter the word NONE:
$x=$ \qquad
(e) List the x-values of all local minima of f. If there are (Now perform a number-line sign test for the second derivative function.)
(f) Use interval notation to indicate where f is concave up:
(g) Use interval notation to indicate where f is concave down:
(h) Find all inflection points of f. If there are no inflection points, then enter the word NONE:
$x=$ \qquad
(i) Use all of the preceding information to sketch a graph of f. When you're finished, enter a " 1 " in the box: \qquad

