

Homework 2.4 – Analyzing Cubic Functions

1. (1 pt) alfredLibrary/AUCI/chapter2/lesson4/quiz/cubes1pet.pg

(a) Factor the difference of cubes:

$$x^3 - 125 =$$

(b) Factor the sum of cubes:

$$x^3 + 64 =$$

2. (1 pt) alfredLibrary/AUCI/chapter2/lesson4/quiz/question8pet.pg Find all of the zeros (roots, x -intercepts) of the function $f(x) = x^3 + 5x^2 - 6x$. If there is more than one answer, then enter them as a comma separated list. ENTER EXACT ANSWERS, not decimal approximations. If there are no zeros, then enter the word NONE.

x = _____

3. (1 pt) alfred Library/AUCI/chapter 2/less on 4/quiz/question 6 pet.pg Given the graph of y = f(x) below, fill in the blanks with the marked x-values at which the given condition is true. For each part, enter your answer as a comma-separated list, e.g., x1,x3,x5. Enter the word NONE if no points satisfy the given condition.

(a)
$$f(x) > 0$$
 at $x =$ _____.

(b)
$$f'(x) > 0$$
 at $x =$ _____

(c)
$$f(x)$$
 is increasing at $x =$

(d)
$$f'(x)$$
 is increasing at $x =$ _____

(e) The slope of
$$f(x)$$
 is negative at $x =$ _____.

(f) The slope of
$$f'(x)$$
 is negative at $x =$

4. (1 pt) alfredLibrary/AUCI/chapter2/lesson4/concavity1bpet.pg
Let
$$f(x) = x^3 - 4x^2 + 6x + 1$$
.

Perform a number-line sign test for the second derivative to find the x-coordinates of inflection points and the open intervals on which f is concave up or down.

- (a) f is concave up on the interval(s) ______.
- (b) f is concave down on the interval(s) _____.
- (c) The inflection points occur at x =

Notes: In the first two blanks, your answer should either be a single interval, such as (0,1), a comma separated list of intervals, such as (-inf, 2), (3,4), or the word NONE. In the last blank, your answer should be a comma separated list or the word NONE.

- 5. (1 pt) alfredLibrary/AUCI/chapter2/lesson4/graphanalysis1pet.pg Suppose that $f(x)=x^3-9x^2+2$.
- (a) List all the critical points of f. If there are no critical points, then enter the word NONE:

x = _____

(Now perform a number-line sign test for the derivative function.)

- (b) Use interval notation to indicate where f is increasing:
- (c) Use interval notation to indicate where f is decreasing:
- (d) List the x-values of all local maxima of f. If there are no local maxima, then enter the word NONE:

x = _____

- (e) List the x-values of all local minima of f. If there are (Now perform a number-line sign test for the second derivative function.)
- (f) Use interval notation to indicate where f is concave up:
- (g) Use interval notation to indicate where f is concave down:
- (h) Find all inflection points of f. If there are no inflection points, then enter the word NONE:

x = _____

(i) Use all of the preceding information to sketch a graph of f. When you're finished, enter a "1" in the box: