Examples 2.4 - Analyzing Cubic Functions

1. Let $y=-x^{3}+6 x^{2}-12 x+72$.
(a) Find all roots (x-intercepts).

Solution: In this case, we can group and factor:

$$
\left(-x^{3}+6 x^{2}\right)+(-12 x+72)=-x^{2}(x-6)-12(x-6)=(x-6)\left(-x^{2}-12\right)
$$

Since $\left(-x^{2}-12\right)$ is never zero, the only root is $x=6$.
(b) Determine the intervals on which the function is positive and the intervals on which it is negative.
Solution: A sign test of y on either side of the root shows
 that y is positive on $(-\infty, 6)$ and negative on $(6,+\infty)$.
(c) Find the derivative of y and use it to determine extrema, saddle points, and intervals of increase and decrease.
_Solution: The derivative of y is $y^{\prime}=-3 x^{2}+12 x-12=-3\left(x^{2}-4 x+4\right)=-3(x-2)^{2}$, which only has one root, namely $x=2$. In other words, y has a horizontal tangent at $x=2$. A sign test of y^{\prime} on either side of the root shows that y is decreasing on both sides of the horizontal tangent. We can conclude that y has a saddle point at $x=2$, and y has no extrema.

2. Find the roots and extrema of $y=x^{3}-2 x^{2}-5 x+6$.

Solution: Grouping will not work here, but notice that $x=1$ is a root. This means that $x-1$ is a factor. We use long division

$$
x - 1 \longdiv { x ^ { 2 } - x - 6 } \begin{array} { l }
{ \underline { x } ^ { 3 } - 2 x ^ { 2 } - 5 x + 6 } \\
{ x ^ { 3 } - x ^ { 2 } }
\end{array}
$$ (shown on the right) to get $y=(x-1)\left(x^{2}-x-6\right)$. By factoring the

$$
-x^{2}-5 x
$$ quotient, we obtain $y=(x-1)\left(x^{2}-x-6\right)=(x-1)(x-3)(x+2)$.

Therefore, the roots are $x=-2,1$, and 3. To find the extrema, we set the

$$
-x^{2}+x
$$

$$
-6 x+6
$$ derivative $y^{\prime}=3 x^{2}-4 x-5$ to zero By the quadratic formula, the roots of $-6 x+6$ the derivative are $x=\frac{2 \pm \sqrt{19}}{3}$, and a sign test of the derivative shows that y has a local maximum of $y\left(\frac{2-\sqrt{19}}{3}\right) \approx 8.2$ at $x=\frac{2-\sqrt{19}}{3} \approx-0.8$, and a local minimum of $y\left(\frac{2+\sqrt{19}}{3}\right) \approx-4.1$ at $x=\frac{2+\sqrt{19}}{3} \approx 2.1$.

3. Graph the functions from Parts 1 and 2 on your calculator and visually identify the characteristics we obtained above.

