Activity 2.4 - Analyzing Cubic Functions

1. (a) The graph is. \qquad
Increasing

Decreasing
The derivative (slope) is............ Positive Negative
The derivative (slope) is \qquadIncreasing Decreasing

(b) The graph is.
Increasing Decreasing

The derivative is.
\qquad
Increasing
Negative
The derivative is. Decreasing
2. (a) The graph is. The derivative is \qquad

Increasing
\|l
Positive
Increasing
Negative
Decreasing

(b) The graph is \qquad
The derivative is. \qquad
The derivative is. \qquad Increasing
3. $y^{\prime}=3 x^{2}-4 x-5 ; y^{\prime \prime}=6 x-4=0$ yields $x=2 / 3$. A sign test shows that y is concave up on $(2 / 3, \infty)$ and concave down on $(-\infty, 2 / 3)$. The inflection point is at $x=2 / 3$ and the coordinates are $(2 / 3,56 / 27)$.
4. (a) $s^{\prime}(t)=3 t^{2}-18 t+27=0$ yields $t=3$.

$s^{\prime \prime}(t)=6 t-18=0$ yields $t=3$.

(b) Speeding up on $(3, \infty)$; slowing down on $(-\infty, 3)$.
5. (a) $(x-5)\left(x^{2}+5 x+25\right) ; x$-intercept at $x=5$.
(b) $(x+4)\left(x^{2}-4 x+16\right) ; x$-intercept at $x=-4$.
6. $x^{3}+2 x^{2}-5 x-6=(x+1)\left(x^{2}+x-6\right)=(x+1)(x+3)(x-2)$; the solutions are $x=-1,-3,2$.
7. $x^{3}-5 x^{2}-12 x+60=x^{2}(x-5)-12(x-5)=(x-5)\left(x^{2}-12\right)=(x-5)(x+\sqrt{12})(x-\sqrt{12})$; the solutions are $x=5, \sqrt{12},-\sqrt{12}$.

