Lesson 2.3 - Definition and Properties of the Derivative

Recall the steps for finding the slope of the tangent line to the graph of f at the point $\left(x_{0}, f\left(x_{0}\right)\right)$:
STEP 1: Pick $x \neq x_{0}$ on either side of x_{0}.
STEP 2: Simplify $\frac{\Delta y}{\Delta x}=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$, if possible. ${ }^{(1)}$
STEP 3: Let $x \rightarrow x_{0}$ from the left and right sides of x_{0}. ${ }^{(2)}$
The result, if one exists, is $f^{\prime}\left(x_{0}\right) .{ }^{(3)}$ This process is expressed formally using limit notation:
Limit definition of the derivative at a point: $f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$
Notes: ${ }^{(1)}$ The simplification will not be much of an issue for simpler functions, but later we will need to use a different form for the limit expression. We derive this form below.
${ }^{(2)}$ The notation $x \rightarrow x_{0}$ implies that we are approaching x_{0} from the left and the right. Because of this, the limit expression is called a two-sided limit. Later we will need to look at the limits from the left and right separately. These are called one-sided limits.
${ }^{(3)}$ For the derivative to exist, the one-sided limits must be equal to the same number. Again, this is not an issue right now since, for example, moving toward a point on a parabola will yield the same slope from either direction.

Since $\Delta x=x-x_{0}$, it follows that $x=x_{0}+\Delta x$. If $x \rightarrow x_{0}$, then $\Delta x \rightarrow 0$. By substituting into the limit definition above, we get an alternate form for the derivative at a point, as well as a form for the derivative function itself:

Limit definition of the derivative at a point:

$$
f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

Limit definition of the derivative function:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

General properties of the derivative: (These properties will be verified in Activity 2.3.) Assume all derivatives below exist.

1. Constant Multiple Rule: If k is a constant and $f(x)=k \cdot g(x)$, then $f^{\prime}(x)=k \cdot g^{\prime}(x)$.
(In words: The derivative of a constant multiple is the constant multiple of the derivative.)
2. Sum/Difference Rule: If $f(x)=g(x) \pm h(x)$, then $f^{\prime}(x)=g^{\prime}(x) \pm h^{\prime}(x)$
(In words: The derivative of a sum or difference is the sum or difference of the derivatives.)
