Homework 2.3 – Definition and properties of the derivative

1. (1 pt) alfredLibrary/AUCI/chapter2/lesson3/differencequotientbinomia Commute the designation of $f(x) = x^2 + 2x + 0$ using the definition	Δ10petppn Δx-→0
Compute the derivative of $f(x) = x^2 + 3x + 9$ using the definition of the derivative function.	Let $\Delta x \rightarrow 0$:
	Let $\Delta x \to 0$.
(HINTS: To enter Δx , type deltax (with no spaces). Write out	
your work on paper first, then enter your answers. Follow the step-by-step instructions. Copy and paste as much as you can to	2. (1 pt) alfredLibrary/AUCI/chapter2/lesson3/derivcubic2p.pg
avoid typing errors. Check your answers frequently.)	Let $f(x) = 2x^3 + 3x - 10$.
	Let $f(x) = 2x^2 + 3x - 10$.
$f'(\mathbf{x})$	(a) $f'(x) = $
$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$	
	(b) The slope of f at $x = -2$ is
In the first blank, substitute $x + \Delta x$ into f :	(c) The instantaneous rate of change of f at $x = -2$ is
= lim	(d) The derivative of f at $x = -2$ is
$\Delta x \rightarrow 0$	(d) The derivative of f at $x = -2$ is
	(e) $f'(-2) =$
In the first blank, FOIL and eliminate parentheses	3. (1 pt) alfredLibrary/AUCI/chapter2/lesson3/derivcubic5pet.pg
	Let $f(x) = (2x^2 - 5)(6x + 6)$, and note that f is a product of two
No.	functions. Eventually we will derive a "product rule," but for
$=\lim_{\Delta x \to 0}$	now, you must multiply out the right-hand side before differen- tiating.
Cancel like terms in the numerator and simplify	Therefore, $f'(x) = $,
	and $f'(4) =$
= lim	4. (1 pt) alfredLibrary/AUCI/chapter2/lesson3/derivcubic6pet.pg
$\Delta x \rightarrow 0$	4. (1 pt) attredLibrary/AUCI/chapter2/lesson3/derivcubicopet.pg If $f(x) = x^3 + 4x^2 + 3$,
Cancel like factors in the numerator and denominator:	then $f''(\mathbf{x}) =$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America