Homework 2.3 - Definition and properties of the derivative

Compute the derivative of $f(x)=x^{2}+3 x+9$ using the definition of the derivative function.
(HINTS: To enter Δx, type deltax (with no spaces). Write out your work on paper first, then enter your answers. Follow the step-by-step instructions. Copy and paste as much as you can to avoid typing errors. Check your answers frequently.)
$f^{\prime}(x)$
$=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$
In the first blank, substitute $x+\Delta x$ into f :
$=\lim _{\Delta x \rightarrow 0}$ \qquad
\qquad

In the first blank, FOIL and eliminate parentheses

2. (1 pt) alfredLibrary/AUCI/chapter2/esson3/deriveubic2p.pg

Let $f(x)=2 x^{3}+3 x-10$.
(a) $f^{\prime}(x)=$ \qquad
(b) The slope of f at $x=-2$ is \qquad .
(c) The instantaneous rate of change of f at $x=-2$ is
(d) The derivative of f at $x=-2$ is \qquad
(e) $f^{\prime}(-2)=$ \qquad
3. (1 pt) alfredLibrary/AUCI/chapter2/lesson3/derivcubic5pet.pg Let $f(x)=\left(2 x^{2}-5\right)(6 x+6)$, and note that f is a product of two functions. Eventually we will derive a "product rule," but for now, you must multiply out the right-hand side before differentiating.

Therefore, $f^{\prime}(x)=$ \qquad
Cancel like terms in the numerator and simplify
$=\lim _{\Delta x \rightarrow 0}$ \qquad

Cancel like factors in the numerator and denominator:

