Examples 2.3 - Definition and Properties of the Derivative

1. Use the " Δx " version of the limit definition of the derivative at a point to find the slope of the curve $f(x)=3 x^{2}-1$ at $x=2$. Then use the " Δx " version of the limit definition of the derivative function to find the slope formula.
Solution: The slope at $x=2$ is $f^{\prime}(2)=\lim _{\Delta x \rightarrow 0} \frac{f(2+\Delta x)-f(2)}{\Delta x}$

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \frac{\left[3(2+\Delta x)^{2}-1\right]-\left[3(2)^{2}-1\right]}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\left[12+12 \Delta x+3 \Delta x^{2}-1\right]-[12-1]}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{12 \Delta x+3 \Delta x^{2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}(12+3 \Delta x) \\
& =12
\end{aligned}
$$

The slope formula is $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$

$$
=\lim _{\Delta x \rightarrow 0} \frac{\left[3(x+\Delta x)^{2}-1\right]-\left[3(x)^{2}-1\right]}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{\left[3 x^{2}+6 x \Delta x+3 \Delta x^{2}-1\right]-\left[3 x^{2}-1\right]}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{6 x \Delta x+3 \Delta x^{2}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0}(6 x+3 \Delta x)
$$

$$
=6 x
$$

2. In Lesson 2.1, we used a "three-step method" to get $\left(a x^{2}+b x+c\right)^{\prime}=2 a x+b$. Derive this formula using the properties of derivatives.
Solution: We $\quad\left(a x^{2}+b x+c\right)^{\prime}=\left(a x^{2}\right)^{\prime}+(b x)^{\prime}+(c)^{\prime} \quad$ (sum/diff rule) have

$$
\begin{aligned}
& =a\left(x^{2}\right)^{\prime}+b(x)^{\prime}+(c)^{\prime} \quad(\text { const.mult. rule }) \\
& =a(2 x)+b(1)+(0) \\
& =2 a x+b
\end{aligned}
$$

3. Use the method in Part 2 to find the derivative of $g(x)=9 x^{2}-14 x+7$.

Solution: By the properties of the derivative, $g^{\prime}(x)=\left(9 x^{2}\right)^{\prime}-(14 x)^{\prime}+(7)^{\prime}=18 x-14$.

