Lesson 2.2 - Analyzing Quadratic Functions

Quadratic function: A function of the form $y=f(x)=a x^{2}+b x+c$, where $a, b, c \in \mathbf{R}$, $a \neq 0$

Domain: The set of all real numbers.
Graph: A parabola, which is continuous and has no sharp corners or vertical tangents. (A graph having these properties is called differentiable. We will formally define this later.)
Orientation: Graph opens upward if $a>0$ and opens downward if $a<0$.

y-intercept (initial value): Set $x=0$ and solve for y. In this case, $y(0)=f(0)=c$.
x-intercepts (roots, zeros): Set $y=f(x)=0$ and solve for x. This may require factoring or using the quadratic formula:

Quadratic Formula: If $f(x)=a x^{2}+b x+c$, then the roots (x-int's) are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

The expression $b^{2}-4 a c$ is called the discriminant, and it tells about the roots:

$$
\begin{aligned}
b^{2}-4 a c>0 & \rightarrow \quad 2 \text { distinct real roots } \\
b^{2}-4 a c=0 & \rightarrow \quad 1 \text { repeated real root } \\
b^{2}-4 a c<0 & \rightarrow \quad 0 \text { real roots (2 complex roots) }
\end{aligned}
$$

Vertex: The vertex of a parabola is the lowest point (minimum) if $a>0$, or the highest point (maximum) if $a<0$. Since the graph has a horizontal tangent line at the vertex, set $y^{\prime}=f^{\prime}(x)=0$ and solve for x to find the x-coordinate of the vertex.

Intervals of increase/decrease: Most directly deduced from the sign of a and the vertex. Otherwise, test the derivative for sign on both sides of the vertex. A positive derivative means that the graph is increasing, and a negative derivative means that the graph is decreasing.

Special forms: Difference of squares: $x^{2}-a^{2} \quad$ Factors as $(x+a)(x-a)$.
The x-intercepts are $x= \pm a$.
Sum of squares: $x^{2}+a^{2} \quad$ Never factors over the reals.
Has no x-intercepts.

