

Homework 2.2 – Analyzing Quadratic Functions

1. (1 point) —alfredLibrary/AUCI/chapter2/lesson2/quiz/question11pet.p	g— 4. (1 point) —alfredLibrary/AUCI/chapter2/lesson2/quad6p.pg—
Find all real number solutions to the difference of squares equa-	The function $f(x) = -3x^2 + 4x - 8$ is increasing on the interval
tion	$(-\infty,A]$ and decreasing on the interval $[A,\infty)$, where A is the
$x^2 - 1 = 0$	input at which f has a horizontal tangent line.
Solutions (separate by commas): $x = $	
2. (1 point) —alfredLibrary/AUCI/chapter2/lesson2/quad9p.pg—	(a) Find A.
The equation $5x^4 - 9x^3 - 4x^2 = 0$ has three real solutions A, B,	
and C where $A < B < C$.	A =
	(b) Does f have a minimum, a maximum, or neither at $x = A$?
A =,	
$B = \underline{\hspace{1cm}}$	Enter your answer as MIN, MAX, or NEITHER.
C =	Anguan
3. (1 point) —alfredLibrary/AUCI/chapter2/lesson2/quad10pet.pg—	Answer:
The equation	5. (1 point) —alfredLibrary/AUCI/chapter2/lesson2/quad4p.pg—
$x^4 - 10x^2 + 9 = 0$	The profit in thousands of dollars for a computer company is
has four solutions. Enter them in increasing order:	given by $P(x) = -x^2 + 20x - 24$, where x is thousands of units
nus rour solutions. Enter them in increasing order.	produced. (For example, $P(2) = 8$ means that the profit is 8
v. —	thousand dollars when 2 thousand units are produced.)
$x_1 = \underline{\hspace{1cm}}$	thousand donars when 2 thousand times are produced.)
$x_2 = \underline{\hspace{1cm}}$	
$x_3 = $	(a) Determine how many thousands of units must be produced
$x_4 = \underline{\hspace{1cm}}$	to yield maximum profit.
	Maximum profit at thousand units.

(b) Determine the maximum profit.

Maximum profit is _____ thousand dollars.

Generated by @WeBWorK, http://webwork.maa.org, Mathematical Association of America

and then solve for x.)

(HINT: Begin by thinking of x^2 as the unknown and treat the original equation as a quadratic. Factor it as $(x^2-a)(x^2-b)=0$,