Homework 2.2 - Analyzing Quadratic Functions

1. (1 point) -alfredLibrary/AUCI/chapter2/lesson2/quiz/question 11pet Find all real number solutions to the difference of squares equation

$$
x^{2}-1=0
$$

Solutions (separate by commas): $x=$
2. (1 point) —alfredLibrary/AUCI/chapter2/lesson2/quad9p.pg-

The equation $5 x^{4}-9 x^{3}-4 x^{2}=0$ has three real solutions A, B, and C where $A<B<C$.
$A=$
$B=$
\qquad
$C=$
3. (1 point) —alfredLibrary/AUCI/chapter2/lesson2/quad10pet.pgThe equation

$$
x^{4}-10 x^{2}+9=0
$$

has four solutions. Enter them in increasing order
$x_{1}=$
$x_{2}=$ \qquad
$x_{3}=$ \qquad
$x_{4}=$ \qquad
(HINT: Begin by thinking of x^{2} as the unknown and treat the original equation as a quadratic. Factor it as $\left(x^{2}-a\right)\left(x^{2}-b\right)=0$, and then solve for x.)
4. (1 point) —alfredLibrary/AUCI/chapter2/lesson2/quad6p.pgThe function $f(x)=-3 x^{2}+4 x-8$ is increasing on the interval $(-\infty, A]$ and decreasing on the interval $[A, \infty)$, where A is the input at which f has a horizontal tangent line.
(a) Find A.
$A=$ \qquad
(b) Does f have a minimum, a maximum, or neither at $x=A$? Enter your answer as MIN, MAX, or NEITHER.

Answer: \qquad
5. (1 point) —alfredLibrary/AUCL/chapter2/lesson2/quad4p.pgThe profit in thousands of dollars for a computer company is given by $P(x)=-x^{2}+20 x-24$, where x is thousands of units produced. (For example, $P(2)=8$ means that the profit is 8 thousand dollars when 2 thousand units are produced.)
(a) Determine how many thousands of units must be produced to yield maximum profit.

Maximum profit at \qquad thousand units.
(b) Determine the maximum profit.

Maximum profit is \qquad thousand dollars.

