## Activity 2.2 - Analyzing Quadratic Functions

1. (a) $x=-4,4$
(b) $x=-1,0,1$
(c) $x=0$ (Factor as $x^{2}\left(\frac{1}{2} x^{2}+2\right)=0$, and note that $\frac{1}{2} x^{2}+2$ is never zero.)
(d) $x=4 / 5,1$
(e) $x=-3,-1,1,3$
2. (a) $5^{\circ} \mathrm{F}$
(b) 1:00 a.m. and 2:30 a.m.
(c) $T^{\prime}(t)=4 t-7$; rising by $5^{\circ} \mathrm{F}$ per hour
(d) The low temperature occurred at 1:45 a.m. and was approximately $-1.125^{\circ} \mathrm{F}$.
(e) Falling on $(0,7 / 4)$; rising on $(7 / 4,4)$

3. (a)

(b) If $V^{\prime}(t)=-30 t+110=0$, then $t=11 / 3$. The maximum volume is $V(11 / 3)=701.67 \mathrm{gal}$.
(c) $V(t)=-15 t^{2}+110 t+500=0$ when $t=\frac{-110 \pm \sqrt{110^{2}-4 \cdot(-15) \cdot 500}}{2 \cdot(-15)} \approx-3.17$ or 10.5 . We cast out the negative solution and find that it takes 10.5 minutes for the tank to empty.
4. Since $C^{\prime}(x)=0.0004 x+7$, we have $C^{\prime}(1000)=7.4$. The marginal cost is $\$ 7.40$.
