Quiz 2.1 - Derivatives of Quadratic Functions

1. (1 point) -alfredLibrary/AUCI/chapter2/esson1/quiz/TFquestion ${ }^{\text {palculator.) }}$

For each statement, type T for true or F for false. Assume that the given derivatives exist. Notice that you have a limited number of attempts.
(a) The derivative of a function at a point P is the slope of the tangent line at P.
\qquad (b) The derivative of a function at a point P is the instantaneous rate of change of the function at P.
\qquad (c) The average rate of change of a function between two points P and Q is the slope of the secant line between P and Q

- (d) The derivative of a function at a point P can be approximated by the average rate of change between P and a nearby point Q.
\qquad (e) The derivative of a function at a point P can be found by "sneaking up" on the slope of the tangent line using slopes of secant lines.

2. (1 point) -alfredLibrary/AUCI/chapter2/lesson1/table.pgFor the function $f(x)=2 x^{2}-2 x+8$, compute the average rates of change for points closer and closer to and on both sides of $x_{0}=-3$.
(HINT: $\frac{\Delta y}{\Delta x}=\frac{f(x)-f(-3)}{x-(-3)}$. Use the table feature on your

x	-3.1	-3.01	-3.001	\rightarrow	-3	\leftarrow	-2.999	-2.99	
-2.9									
$\frac{\Delta y}{\Delta x}$	-	-	-	\rightarrow	$? ? ?$	\leftarrow	-	-	

Estimate $f^{\prime}(-3)=$ \qquad
3. (1 point)-alfredLibrary/AUCL/chapter2/lesson1/quiz/question2pet.pg— Let $f(x)=-5 x^{2}-8 x-2$.
(a) What is the slope of the tangent line to the graph of f at $x=-5$? (Use the formula for the derivative of a quadratic.)
$f^{\prime}(-5)=$ \qquad
(b) At which x does f have a maximum value (highest point)?
$x=$ \qquad
(c) What it the maximum value of f ?
$y=$ \qquad
(d) What is the slope of the tangent line at the maximum value?

Slope $=$ \qquad

