Homework 2.1 - Derivatives of Quadratic Functions

1. (1 pt) alfredLibrary/AUC1/chapter2/lesson1/quiz/questionQuadp4.pg
The point $P=(5,36)$ lies on the curve $y=x^{2}+x+6$.
(a) For the given values of x, let Q be the nearby point $\left(x, x^{2}+x+6\right)$. Find the slope of the secant line between P and Q. (Hint: $\frac{y(x)-y(5)}{x-5}$.)

If $x=5.1$, then the slope between P and Q is \qquad
If $x=5.01$, then the slope between P and Q is \qquad
If $x=4.9$, then the slope between P and Q is \qquad
If $x=4.99$, then the slope between P and Q is \qquad
(b) Based on the above results, guess the slope of the tangent line (derivative) at $P=(5,36)$.
$y^{\prime}(5)=$ \qquad
2. (1 pt) alfredLibrary/AUCL/chapter2/lesson1/Velocity2p.pg

If a ball is thrown straight up into the air with an initial velocity of $85 \mathrm{ft} / \mathrm{s}$, its height in feet after t seconds is given by $h(t)=85 t-16 t^{2}$. Find the average velocity on the following time intervals:
$[2,2.1]:$ \qquad ft / s
[2,2.01]: \qquad ft / s
[2,2.001]: \qquad ft / s

Based on the above results, guess what the instantaneous velocity of the ball is when $t=2$.
$v(2)=$ \qquad ft / s
3. (1 pt) alfredLibrary/AUCI/chapter2/lesson1/estimateslope1pet.pg Use the graph of $y=f(x)$ in the accompanying figure to estimate the value of $f^{\prime}(2)$.

Click on the image to see a larger graph.
An estimate of $f^{\prime}(2)$ is \qquad
4. (1 pt) alfredLibrary/AUCI/chapter2/lesson1/growthrate2pet.pg The population of a slowly growing bacterial colony after t hours is given by $p(t)=4 t^{2}+34 t+200$ bacteria. The growth rate after 2 hours is \qquad bacteria per hour. (Use the formula for the derivative of a quadratic.)
5. (1 pt) alfredLibrary/AUCL/chapter2/lesson1/quadapplication3pet.pg Suppose that the equation of motion for a particle is $s(t)=$ $4 t^{2}-2 t+4$, where s is meters and t is seconds.
(a) Find the velocity and acceleration as functions of t. (Use the formulas for the derivatives of quadratic and linear functions.)
$v(t)=\ldots m / s$
$a(t)=\ldots m / s^{2}$
(b) Find the time at which the particle is at rest.
$t=$ \qquad s

