

## **Homework 2.1 – Derivatives of Quadratic Functions**

|                                                                | $v(2) = \underline{\hspace{1cm}}$ ft/s                             |
|----------------------------------------------------------------|--------------------------------------------------------------------|
| 1. (1 pt) alfredLibrary/AUCI/chapter2/lesson1/quiz-            |                                                                    |
| /questionQuadp4.pg                                             | 3. (1 pt) alfredLibrary/AUCI/chapter2/lesson1/estimateslope1pet.pg |
| The point $P = (5,36)$ lies on the curve $y = x^2 + x + 6$ .   | Use the graph of $y = f(x)$ in the accompanying figure to esti-    |
|                                                                | mate the value of $f'(2)$ .                                        |
| (a) For the given values of $x$ , let $Q$ be the nearby point  |                                                                    |
| $(x,x^2+x+6)$ . Find the slope of the secant line between P    |                                                                    |
| and Q. (Hint: $\frac{y(x)-y(5)}{x-5}$ .)                       |                                                                    |
|                                                                |                                                                    |
| If $x = 5.1$ , then the slope between P and Q is               | 1                                                                  |
|                                                                |                                                                    |
| If $x = 5.01$ , then the slope between P and Q is              |                                                                    |
| If a 40 then the alone between B and O is                      | Click on the image to see a larger graph.                          |
| If $x = 4.9$ , then the slope between $P$ and $Q$ is           |                                                                    |
| If $x = 4.99$ , then the slope between P and Q is              | An estimate of $f'(2)$ is                                          |
| 11 x = 4.77, then the slope between 1 and Q is                 |                                                                    |
| (b) Based on the above results, guess the slope of the tangent | 4. (1 pt) alfredLibrary/AUCI/chapter2/lesson1/growthrate2pet.pg    |
| line (derivative) at $P = (5,36)$ .                            | The population of a slowly growing bacterial colony after t        |
|                                                                | hours is given by $p(t) = 4t^2 + 34t + 200$ bacteria. The growth   |
| y'(5) =                                                        | rate after 2 hours is bacteria per hour. (Use the for-             |
|                                                                | mula for the derivative of a quadratic.)                           |

2. (1 pt) alfredLibrary/AUCI/chapter2/lesson1/Velocity2p.pg If a ball is thrown straight up into the air with an initial velocity of 85 ft/s, its height in feet after t seconds is given by  $h(t) = 85t - 16t^2$ . Find the average velocity on the following time intervals:

Based on the above results, guess what the instantaneous velocity of the ball is when t = 2.

5. (1 pt) alfredLibrary/AUCI/chapter2/lesson1/quadapplication3pet.pg Suppose that the equation of motion for a particle is s(t) = $4t^2 - 2t + 4$ , where s is meters and t is seconds.

(a) Find the velocity and acceleration as functions of t. (Use the formulas for the derivatives of quadratic and linear functions.)

$$v(t) = \underline{\hspace{1cm}} m/s$$

$$a(t) = \underline{\qquad} m/s^2$$

(b) Find the time at which the particle is at rest.

$$t = \underline{\hspace{1cm}} s$$