Examples 2.1 - Derivatives of Quadratic Functions

1. For the function $f(x)=x^{2}$, calculate the average rates of change for points closer and closer to and on either side of $x_{0}=1$. Guess $f^{\prime}(1)$.

Solution:

x	0.9	0.99	0.999	\rightarrow	$x_{0}=1$	\leftarrow	1.001	1.01	1.1
$\Delta y / \Delta x$				\rightarrow	$f^{\prime}(1)=$	\leftarrow			

2. Verify the guess in Part 1 by using the formula for the derivative of a quadratic.

Solution:

3. The time it takes an average athlete to swim 100 meters freestyle at age x years can be modeled by $T(x)=0.181 x^{2}-8.463 x+147.376$ seconds.
(a) Find the rates of change for a 13 -year-old and a 25 -year-old swimmer.
(b) At what age is the swim time the least? What is the swim time at that age?

Solution: (a)
(b)

Note: In general, the x-intercepts of the derivative function tell where the original function has horizontal tangent lines.

