Examples 1.5 - Rectilinear Motion

1. A car is driven along a straight track with position given by $s(t)=150 t-300 \mathrm{ft}(t$ in seconds $)$.
(a) Find $v(t)$ and $a(t)$.

Solution:

(b) Use calculus to find the displacement and total distance traveled over the interval $[1,4]$. Solution:
2. A projectile is fired upward from a 15.3 m cliff at a speed of $19.6 \mathrm{~m} / \mathrm{s}$ and allowed to fall into a valley below. The acceleration g due to Earth's gravity is about $9.8 \mathrm{~m} / \mathrm{s}^{2}$, or about $32 \mathrm{ft} / \mathrm{s}^{2}$, downward.
(a) Given that $a(t)=-9.8 \mathrm{~m} / \mathrm{s}^{2}$, find $v(t)$ and use it to find the time at which the projectile reaches its maximum height. Find the maximum height of the projectile using geometry.

Solution:

(b) Use geometry to find the displacement and total distance traveled over the interval $[0,3]$.

Solution:

