Lesson 1.4 - Integrals of Constant Functions

Given a linear function $y=m x+b$, we can find a unique constant slope (derivative) $y^{\prime}=m$. However, given a constant function $y^{\prime}=m$, there are an infinite number of lines having m as a slope. Lines that have the same slope m are vertical shifts of one another and have equations of the form $y=m x+C$ for some constant C. These lines form the family of antiderivatives of m, which is denoted
 by the indefinite integral:

$$
\int m d x=m x+C \quad \text { (family of antiderivatives of } m \text {) }
$$

(The function between the integral sign \int and the differential $d x$ is called the integrand)

Suppose we are given the rate of change $f^{\prime}(x)$ over some interval $\left[x_{0}, x_{1}\right]$ and we want the net (accumulated) change in f on $\left[x_{0}, x_{1}\right]$.

Observation 1: If f has a constant rate of change $f^{\prime}(x)=m$ on $\left[x_{0}, x_{1}\right]$, then f is an antiderivative of m of the form $f(x)=m x+C$, for some constant C. Note that the net change in $f(x)=m x+C$ on $\left[x_{0}, x_{1}\right]$ for any C is

$$
f\left(x_{1}\right)-f\left(x_{0}\right)=\left(m x_{1}+C\right)-\left(m x_{0}+C\right)=m x_{1}-m x_{0}
$$

Observation 2: Let A denote the net (signed) area bounded by f^{\prime} from x_{0} to x_{1}. From geometry,

$$
A=m\left(x_{1}-x_{0}\right)=m x_{1}-m x_{0}=f\left(x_{1}\right)-f\left(x_{0}\right)
$$

The net (signed) area bounded by the constant function $y=m$ on the interval $\left[x_{0}, x_{1}\right]$ is denoted by the

$$
\text { Definite integral: } \int_{x_{0}}^{x_{1}} m d x=\text { net signed area bounded by } m \text { on }\left[x_{0}, x_{1}\right]
$$

(Units: (units of $m) \times($ units of $x)$)

Fundamental Theorem of Calculus (for constant functions): If $f^{\prime}(x)$ is a constant function, then the net area bounded by the graph of $f^{\prime}(x)$ on the interval $\left[x_{0}, x_{1}\right]$ is equal to the change in the (or any) antiderivative $f(x)$ on $\left[x_{0}, x_{1}\right]$. That is,

$$
\int_{x_{0}}^{x_{1}} f^{\prime}(x) d x=\left.f(x)\right|_{x_{0}} ^{x_{1}}=f\left(x_{1}\right)-f\left(x_{0}\right)
$$

