Examples 1.4 - Integrals of Constant Functions

1. Evaluate each of the following.
(a) $(9 x-12)^{\prime}$
(b) $\int 9 d t$
(c) $(2.991-0.423 u)^{\prime}$
(d) $\int(-0.423) d T$

Solution: (a) The slope of the linear function $y=9 x-12$ is $(9 x-12)^{\prime}=9$.
(b) The family of linear functions that have slope $m=9$ is $\int 9 d t=9 t+C$.
(c) The slope of the linear function $y=2.991-0.423 u$ is $(2.991-0.423 u)^{\prime}=-0.423$.
(d) The family of functions that have slope $m=-0.423$ is $\int(-0.423) d T=-0.423 T+C$.
2. If a savings account increases by $\$ 110$ per month, then how much money is saved from month 5 to month 10 ?

Solution: We must compute the net change in the amount in the account over [5, 10] given that the rate of increase is $\$ 110$ per month. To do so, we need a member of the family

$$
\int 110 d t=110 t+C
$$

so we simply choose the one with $C=0$. Therefore, by the Fundamental Theorem, we have

$$
\int_{5}^{10} 110 d t=\left.(110 t)\right|_{5} ^{10}=110(10)-110(5)=550 \text { dollars }
$$

(We could have computed the answer algebraically by multiplying $\$ 110$ by 5 months, but only because the rate is constant. We will see that the FTC holds for variable rates as well.)
3. Evaluate $\int_{-3}^{6}(-4) d x$ and sketch the geometrical interpretation of the answer.

Solution: By the Fundamental Theorem, $\int_{-3}^{6}(-4) d x=\left.(-4 x)\right|_{-3} ^{6}=(-4)(6)-(-4)(-3)=-36$, which represents the net signed area between the graph of $y=-4$ and the x-axis on $[-3,6]$:

