Activity 1.4^{\ddagger} - Integrals of Constant Functions

FOR DISCUSSION: What does $\int m d x$ represent? What about $\int_{x_{0}}^{x_{1}} m d x$?
Explain the FTC (for constant functions) in your own words.

1. (a) Evaluate the indefinite integral to find a family of functions whose derivatives are 3 .

$$
\int 3 d x=
$$

(a) Choose a few values for C and sketch these members of the family from Part (a).

(b) Evaluate the definite integral.

$$
\int_{-1}^{4} 3 d x=
$$

(d) Sketch the geometrical interpretation of Part (c).

[^0]2. Evaluate each of the following indefinite and definite integrals. Show all work!
(a) $\int 1 d x=$
(b) $\int 5.4 d t=$
(c) $\int-62 d u=$
(d) $\int_{2}^{5}-1 d x=$
(e) $\int_{0}^{3} 4.32 d x=$
(f) $\int_{-3}^{2}-0.02 d v=$
3. Suppose Bill and Sally are returning from a fishing trip at a constant velocity of $v(t)=-45$ mi / h (westbound). Let s be the distance from Bill's house at time t.
(a) Evaluate the indefinite integral of the velocity function.
$$
\int v(t) d t=
$$
(b) Use the Fundamental Theorem of Calculus to evaluate the definite integral of the velocity function on the interval [0,2]. Explain your answer in the context of the problem.
$\int_{0}^{2} v(t) d t=$
(c) Can we determine how far Bill and Sally are from Bill's house after the first 2 hours of driving? What other information is needed?
(d) Suppose the initial distance from Bill's at time $t=0$ is $s(0)=200$ miles. Use your answer to Part (a) to find the specific antiderivative $s(t)$ satisfying this condition, and then use it to find how far Bill and Sally are from Bill's house after the first 2 hours. (This type of problem is called an initial-value problem).
(e) Why are the answers to Parts (b) and (d) different?
4. Express the net area of the shaded region in the figure to the left with a definite integral. Then use the Fundamental Theorem to evaluate it.

5. Express the net area of the shaded region in the figure to the left with a definite integral. Then use geometry to compute it. (HINT: First find the equation of the line.)

6. The family of antiderivatives of a constant function $y^{\prime}=m$ is an infinite family of linear functions $y=m x+C$. If a point in the plane (initial condition) is given, then exactly one member of the family passes through the point and is identified by the constant C.

Suppose we know that $f^{\prime}(x)=2$. Determine the most general formula for f. Then find the member of the family that passes through the point $(1,7)$.

[^0]: ₹ This activity has supplemental exercises.

