Homework 1.3 - Derivatives of Linear Functions

1. (1 pt) alfredLibrary/AUCI/chapter1/lesson3/derivativeoflinear1.pg Suppose b is a real constant.

If $f(x)=b$, then $f^{\prime}(x)=$ \qquad
If $g(x)=17$, then $g^{\prime}(x)=$ \qquad
If $h(x)=-5$, then $h^{\prime}(x)=$ \qquad
2. (1 pt) alfredLibrary/AUCI/chapter1/lesson3/derivativeoflinear2.pg Suppose m and b are real constants.

If $f(x)=m x+b$, then $f^{\prime}(x)=$ \qquad
If $g(x)=5 x-8$, then $g^{\prime}(x)=$ \qquad

If $h(x)=-15 x+26$, then $h^{\prime}(x)=$
3. (1 pt) alfredLibrary/AUCI/chapter $1 /$ lesson $3 /$ derivativefromgraph 2 pet.pg Suppose the position s of a car at time t is linear as shown in the graph below. Your answers must include units.

If the position is given in feet and time is measured in minutes, then $s^{\prime}(t)=$ \qquad

This means that the velocity (rate of change of position) of the car is \qquad
4. (1 pt) alfredLibrary/AUCI/chapter $1 /$ /esson3/derivativeasslope 1 pet.pg The function $H(t)$ measures the amount of hydrogen in a tank, in cubic feet, at time t hours. Suppose $H(t)$ is a linear function such that $H(3)=114 f t^{3}$, and $H^{\prime}(3)=3 \frac{f t^{3}}{h r}$. Then
$H(11)=$ \qquad (Include units.)

Hint: First find the point-slope form for H.
5. (1 pt) alfredLibrary/AUCI/chapter1/lesson3/quiz/question3p.pg Suppose $b(t)$ is the length of a bamboo shoot, measured in kilometers, at time t, measured in days. Then $b^{\prime}(t)$ represents the rate at which the length is changing at time t, and $b^{\prime \prime}(t)$ is the rate at which the rate of change is changing at time t.

The units for $b^{\prime}(t)$ are \qquad

The units for $b^{\prime \prime}(t)$ are \qquad
Abbreviations for units.

