## Examples 1.3 - Derivatives of Linear Functions

1. Find the first and second derivatives of $y=4 x+1, g(t)=3-5 t$, and $h(r)=1.344$.

Solution: Since all three of the given functions are linear, the derivative of each function is simply its slope. That is, $y^{\prime}=4, g^{\prime}(t)=-5$, and $h^{\prime}(r)=0$. For the same reason, the second derivatives are $y^{\prime \prime}=0, g^{\prime \prime}(t)=0$, and $h^{\prime \prime}(r)=0$.
2. The rate of change of the position over time of a moving object is its velocity $v(t)$, and the rate of change of velocity over time is its acceleration $a(t)$. If the position of an object after $t$ minutes is given by $s(t)=65 t+20 \mathrm{~cm}$, then what are its velocity and acceleration functions?

Solution: In general, if $s(t)=65 t+20$, then $s^{\prime}(t)=65$ and $s^{\prime \prime}(t)=0$. We must express our answers in the context of the problem with appropriate units, and the words "over time" give us a hint as to how to do this: If $s(t)=65 t+20 \mathrm{~cm}$, then the velocity $v(t)=s^{\prime}(t)=65 \mathrm{~cm} / \mathrm{min}$ (centimeters per minute). If $v(t)=s^{\prime}(t)=65 \mathrm{~cm}$ per minute, then the acceleration function is $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=0 \mathrm{~cm}$ per minute per minute, or $\mathrm{cm} / \mathrm{min}^{2}$.
4. For each part, sketch an example of a (possibly nonlinear) graph having the given properties.
(i) A constant derivative of two.
(ii) A negative derivative at $x=1$, and a positive derivative at $x=3$.
(iii) A zero derivative at $x=-1$, positive derivatives on the interval $(-1,2)$, and a zero derivative at $x=2$.

Solution: There are many correct solutions. Here are some possibilities.
(i)

(ii)

(iii)


