Activity 1.3 - Derivatives of Linear Functions

1. (a) $f^{\prime}(x)=0$
(b) $g^{\prime}(x)=0$
(c) $h^{\prime}(x)=0$
(d) $F^{\prime}(x)=m$
(e) $G^{\prime}(x)=9$
(f) $H^{\prime}(x)=-1$
2. (a) $v(t)=s^{\prime}(t)=-2 \mathrm{ft} / \mathrm{s}$
(b) $v(10)=-2 \mathrm{ft} / \mathrm{s}$
(c) $a(t)=v^{\prime}(t)=0 \mathrm{ft} / \mathrm{s}^{2}$
3. (a) The given point is $(1,22)$ and the slope is -0.4 . Therefore, $H-22=-0.4(t-1)$, so $H(t)=-0.4 t+22.4 \mathrm{ft}^{3}$.
(b) $H(5)=-0.4(5)+22.4=20.4 \mathrm{ft}^{3}$
4. (a) The given point is $(50,150)$ and the slope -0.1 . Therefore, $P-150=-0.1(x-50)$, so $P(x)=-0.1 x+155$ dollars, where $40 \leq x \leq 60$ is the number of shirts sold.
(b)

(c) The net change in P is $P(60)-P(40)=(149$ dollars $)-(151$ dollars $)=-2$ dollars. The negative shows a decrease in profit.
(d) $P^{\prime}(x)=-0.1$ dollars per shirt.
(e)

(f) Net area bounded by $P^{\prime}=$ length \times height $=(20$ shirts $) \times(-0.1$ dollars $/$ shirt $)=-2$ dollars
(g) The answers are the same! This result is called the Fundamental Theorem of Calculus...
