Lesson 1.2 - Linear Functions

A linear function is a rule for which each unit change in input produces a constant change in output. The constant change is called the slope and is usually denoted by m.

Slope formula: If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are any two distinct points on a line, then the slope is

$$
\left.m=\frac{\text { rise }}{r u n}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} . \quad \text { (An average rate of change! }\right)
$$

Equations for lines:

Slope-intercept form: $\quad y=m x+b \quad m$ is the slope of the line;
b is the y-intercept (i.e., initial value, $y(0)$).
Point-slope form: $\quad y-y_{0}=m\left(x-x_{0}\right) m$ is the slope of the line; $\left(x_{0}, y_{0}\right)$ is any point on the line.
Domain: All real numbers.
Graph: A line with no breaks, jumps, or holes. (A graph with no breaks, jumps, or holes is said to be continuous. We will formally define continuity later in the course.)

A constant function is a linear function with slope $m=0$. The graph of a constant function is a horizontal line, and its equation has the form $y=b$. A vertical line has equation $x=a$, but this is not a function since it fails the vertical line test.

Notes:

1. A positive slope means the line is increasing, and a negative slope means it is decreasing.
2. If we walk from left to right along a line passing through distinct points P and Q, then we will experience a constant steepness equal to the slope of the line. If we stand still at P, Q, or any other point on the line, then we will experience the same steepness.
3. If $y=f(x)$ is any function defined at distinct points P and Q, then the average rate of change from P to Q is the slope of the secant line between P and Q.

4. The slope of the secant line between two points describes the relationship between initial and final values, but not intermediate behavior.
