Examples 1.2 - Linear Functions

1. Find two forms of the equation of the line with slope -4 passing through the point $(3,2)$.

Solution: Since we are given a point and a slope, we can use the point-slope form to get

$$
y-2=-4(x-3)
$$

Solving for y in the point-slope form gives the slope-intercept form

$$
y=-4 x+14
$$

2. Find two forms of the equation of the line passing through the points $(-2,1)$ and $(1,2)$.

Solution: The slope of the line through the given points is $m=\frac{\Delta y}{\Delta x}=\frac{2-1}{1-(-2)}=\frac{1}{3}$.
Therefore, two point-slope forms are

$$
y-1=\frac{1}{3}(x-(-2)) \quad \text { and } \quad y-2=\frac{1}{3}(x-1)
$$

Solving for y in either point-slope form gives the slope-intercept form

$$
y=\frac{1}{3} x+\frac{5}{3}
$$

Note that the slope-intercept form of a line is unique, while there are infinitely many pointslope forms.
3. Find an equation of the line passing through the points $(0,4)$ and $(-3,4)$.

Solution: The slope of the line through the given points is $m=\frac{\Delta y}{\Delta x}=\frac{4-4}{-3-0}=\frac{0}{-3}=0$.
Since the slope is zero and the y-intercept is $b=4$, the line is the constant function $y=4$.
4. Find an equation for the line passing through the points given in Examples 1.1.

Solution: In Examples 1.1, we found that the slope is -4.5 , and we are given a point $(2,80)$. The point-slope and slope-intercept forms are, respectively,

$$
y-80=-4.5(x-2) \text { and } y=-4.5 x+89
$$

We could have also used the point $(6,62)$ to get $y-62=-4.5(x-6)$.

