Activity 1.2 - Linear Functions

1. (a) $y-5=2(x-4)$ or $f(x)-5=2(x-4)$
(b) $y=2 x-3$ or $f(x)=2 x-3$
(c) $x=3 / 2$
2. (a) Between 1915 and 1920, the population changed by $3100-3250=-150$ people, and changed at a rate of $\frac{3100-3250}{1920-1915}=-30$ people per year. The negative answers represent a decrease in population.
(b) $P(t)=-30 t+3250$ people, where t is years after 1915 .
(c) $P(10)=-30(10)+3250=2950$ people at the end of 1925 .
3. (a)

Time t	Position s
0	-15
1	25
2	65
3	105
4	145

(b) $y=s(t)=40 t-15$ miles from Bill's house.
(c) Set $40 t-15=0$ to get $40 t=15$, or $t=15 / 40=0.375$. This is the time at which the position from Bill's house is zero. That is, they pass Bill's house after 0.375 hours.
(d) Since $s(0)=-15$, we can conclude that the initial position was 15 miles west of Bill's.
(e) $s^{\prime}(t)=40$ miles per hour (eastward)
4. (a) $y=s(t)=40 t+C$ miles from Bill's house
(b) $s^{\prime}(t)=40$ miles per hour (eastward)

(c) Infinitely many, since any line of the form $40 t+C$ has a slope of 40 . Examples include $40 t-10,40 t$, and $40 t+3$. The differences between these lines are their y-intercepts.
(d) Since the distance traveled at the start of the trip is zero, the constant $C=0$. Therefore, $s(t)=40 t$ miles traveled.

