Lesson 1.1 - Average Rate of Change

Precalculus questions: How does a function change from one input to another, and at what average rate does the change occur?

Let $y=f(x)$, and let two inputs $x_{0} \neq x_{1}$ be given.
The net change in y on the interval $\left[x_{0}, x_{1}\right]$ is

$$
\begin{aligned}
\Delta y & =f\left(x_{1}\right)-f\left(x_{0}\right) \\
& =(\text { later output })-(\text { earlier output })
\end{aligned}
$$

(Units: Same as y.)

The average rate of change in y on the interval $\left[x_{0}, x_{1}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{\text { rise }}{r u n} \quad \text { (Units: Units of } y \text { "per" unit of } x \text {.) }
$$

Notes:

1. For change and average rate of change in y, a positive sign implies a net increase in y, and a negative sign implies a net decrease in y.
2. Change and average rate of change describe the relationship between initial and final values, but not intermediate behavior of the graph within the interval. (We need calculus for that.)
3. An average rate of change measures "how fast" a function is rising or falling over a given interval, on average.
