Examples 1.1 - Average Rate of Change

Let $T(t)$ be the air temperature in degrees Fahrenheit between 6 A.M. and 8 P.M. where t is hours after noon. Suppose $T(2)=80$ and $T(6)=62$.

1. Sketch a graph of the given data points and mark and label the net changes ΔT and Δt.

Solution:

2. Describe the meanings of the expressions $T(2)=80$ and $T(6)=62$ in words with units.

Solution: The expression $T(2)=80$ means that at 2 hours after noon, or at 2:00 P.M., the temperature was $80^{\circ} \mathrm{F}$. The expression $T(6)=62$ means that at 6 hours after noon, or at 6:00 P.M., the temperature was $62^{\circ} \mathrm{F}$.
3. Find ΔT and $\Delta T / \Delta t$ on the interval $[2,6]$, and describe the answers in words with units.

Solution: We have

$$
\Delta T=T(6)-T(2)=62-80=-18
$$

This means that between 2:00 P.M. and 6:00 P.M, the temperature decreased by $18^{\circ} \mathrm{F}$.

Furthermore,

$$
\frac{\Delta T}{\Delta t}=\frac{T(6)-T(2)}{6-2}=\frac{62-80}{6-2}=\frac{-18}{4}=-4.5
$$

which means that between 2:00 P.M. and 6:00 P.M, the temperature decreased by $4.5^{\circ} \mathrm{F}$ per hour, on average.
4. What can be said about the temperature at 4:00 P.M.?

Solution: Change and average rate of change do not describe intermediate behavior, so the best we could do is estimate the temperature at 4:00 P.M. using the average rate of change. At 2:00 P.M., the temperature was $80^{\circ} \mathrm{F}$, and the average rate of change was $-4.5^{\circ} \mathrm{F}$. Therefore, the temperature at 4:00 P.M. was approximately $(-4.5)(2)+80=71^{\circ} \mathrm{F}$.

