Chapter 1 Review

1. (Lesson 1.1) Let $S(t)$ be the amount of sales in dollars by a small business during the t-th week after January 1. Suppose sales on January 1 were 8044 dollars and sales 6 weeks later were 5200 dollars. Compute the following over the time interval [0, 6]. Include units in each answer.
(a) $\Delta t=$ \qquad (b) $\Delta S=$
(c) $\frac{\Delta S}{\Delta t}=$ \qquad
(d) Use the average rate of change in Part (c) to estimate the sales during the $4^{\text {th }}$ week after January 1. That is, estimate $S(4)$.
2. (Lesson 1.2) The graph of a function is given in Figure 1.
(a) Determine the average rate of change of the function between the indicated points.
(b) Find a point-slope form $y-y_{0}=m\left(x-x_{0}\right)$ of the secant line between the indicated points. Use the left-hand point as $\left(x_{0}, y_{0}\right)$.
(c) Find the slope-intercept form $y=m x+b$ of the secant line between the indicated points.

3. (Lesson 1.3) Suppose b is a real constant.
(a) If $f(x)=b$, then $f^{\prime}(x)=$ \qquad .
(b) If $g(x)=25$, then $g^{\prime}(x)=$ \qquad .
(c) If $h(x)=-0.13$, then $h^{\prime}(x)=$ \qquad .
4. (Lesson 1.3) Suppose m and b are real constants.
(a) If $f(x)=m x+b$, then $f^{\prime}(x)=$ \qquad .
(b) If $g(x)=8 x-5$, then $g^{\prime}(x)=$ \qquad .
(c) If $h(x)=44-x$, then $h^{\prime}(x)=$ \qquad .
5. (Lesson 1.3) If the position of an object is given by $s(t)=-35 t+8 \mathrm{ft}$, then at $t=3$ seconds,
(a) the velocity of the object is \qquad _,
(b) the speed of the object is \qquad , and
(c) the acceleration of the object is \qquad .
6. (Lesson 1.4) For each pair of integrals, find the family of antiderivatives, and then use the Fundamental Theorem of Calculus to evaluate the definite integral.
(a) $\int 12 d x=$ \qquad (b) $\int-3 d x=$
$\int_{-1}^{2} 12 d x=$ \qquad

$$
\int_{1}^{5}-3 d x=
$$

7. (Lesson 1.4) Express the net area of the shaded region in Figure 2 below with a definite integral. Then use the Fundamental Theorem to evaluate it.

8. (Lesson 1.4) Find the equation of the line in Figure 3 above and express the net area of the shaded region with a definite integral. Then use geometry to compute it.
9. (Lesson 1.5)
(a) If an object travels along a line with constant velocity $-22 \mathrm{~m} / \mathrm{s}$, then the general formula for the position of the object is $s=\int$ \qquad $=$ \qquad .
(b) If the object has initial position 253 m , then we can find the unknown constant C. In this case, the position function is $s=$ \qquad .
(c) Using the position function, we find that the object is at the origin at time $t=$ \qquad .
(d) The net change in the object's position (i.e., displacement) from time 8.25 s to time 13.75 s is \qquad _.
(e) The total distance traveled over the same time period is \qquad . (Note: Your answers should not contain an absolute value.)
10. (Lesson 1.5) Suppose $v(t)=2-3 t$ is the velocity (in meters per minute) of an object in rectilinear motion.
(a) Sketch the graph of v on the interval $[0,2]$.
(b) The t-intercept of $v(t)$ is the time at which the velocity is zero. In this case, the t-intercept is $t=$ \qquad _.
(c) Use the graph of $v(t)=2-3 t$ and geometry to find the displacement on [0, 2].
(d) Use the graph of $|v(t)|=|2-3 t|$ and geometry to find the total distance traveled by the object on $[0,2]$.
